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1. Introduction

We consider a metastable system (e. g. a supersaturated
vapour), where the thermodynamic constraints (e. g. tem-
perature, pressure, system size, density) are chosen in a
way that a first order phase transition is possible to
undergo in the system.

If impurities (e. g. dust, ions, other particles) are-absent
the phase transition occours a certain region of the value
of the supersaturation which gives a measure for the me-
tastability of the system. The mechanism of this phase
transition is described by a homogenous nucleation pro-
cess:.In the homogenous$ system (e. g. vapour) small clus-
ters (e.g. droplets) are created spontaneously, which can
grow to a macroscopic size under certain conditions.

The theoretical description of this process is held at
different levels. A general method with respect to the
basic processes of the phase transition is the formalism of
master equations /1, 2, 3/. The evolution of the clusters is
assumed there to be a Markovian birth and death process
with certain transition probabilities. This way of descrip-
tion is close connected with computer simulation experi-
ments when the same basic reactions are used. In this
case the cluster are descretely characterized. For a con-
tinuous description of the ensemble of the clusters a
cluster distribution function is introduced and the master
equation can be converted into a Fokker-Planck equation,
which gives the time dependence of this distribution
function. '

When the diffusion of the system is eliminated, we get
from the Fokker-Planck equation a Liouville equation
which describes the deterministic evolution of the system.
With such a deterministic equation the competition pro-
cess of the cluster ensemble can be well explainted for
the late stage of the phase transition (Ostwald ripening).
This is a typical behaviour of systems with limited par-
ticle numbers.

But to describe the first stage of the phase transition a
stochastic method is necessary to use. It explains the
establishment of the cluster distribution as well as tran-
sitions between the stable states of the system.

In this paper we derive starting with the basie master
equation the equations for the mean values and the Fok-
ker-Planck equation. By means of this equation we discuss
the deterministic kinetics of the gystem.

2. The stochastic basic processes of homogeneous nuclea-
tion o~
We consider a closed and finite system with N free partic-
les being an ideal gas mixture, We fix the thermodynamic
constrains
. N =const, V=const, T =const (1
in such a way that the pressure of the supposed ideal
vapour
p=N/V kgT (2

o

is larger than the equilibrium pressure p., (T) for the
saturated vapour at a planar liquid interface. We define
a supersaturation of the initial state as follows
o= B Nt *
Po PV
The supersaturation gives a measure for the metastability
of the system.
vp has to reach at least a critical value to insert a nuclea-
tion process, as further discussed (see e. g. /4, 5/). ThlS fact
is assumed to be realized here.
We suppose further, that the nucleation process, the for-
mation of droplets from the vapour, ‘can be described by
the following kinetic mechanism:
W+
Ap+ A —— Agir . 4
w

L is the number of particles bound in the droplet (B<N).
It is assumed here that the growth and shrinkage of the
droplet takes place only by the attachment or the evapo-
ration of a free particle (monomer). The given reactions
occour with the transition probabilities per unit time
w+t+ and w-. In the given kinetic model (4) interactions
between the clusters with 2= 2 like coagulation processes
or collisions between two or more clusters are not taken
into account. The probabilities of these events should be
neglectible in comparison with the probabilities of the
reactions (4). :

By means of the kinetics (1) a cluster distribution N
should be established:’

= |N,N,Ny.:. Ng, .. Ny ®
That means at a g1ven time t there exist Nj free partlcles
(monomers) Na dimers ... etc. in the system. :
Because of the conservatlon of the overall particle num-
ber (1) the relation holds:

N= yQ‘NF const ()
)

For the maximum number of clusters with & particles the
following inequation holds:

N

ogst—é €=1,...,N Q)

The evolution of the cluster distribution by means of (4)
is assumed to be a Markovian birth "and death process
and can be described with a ma_ster equation. We define

P(N,t)=P(N;N, ... Ny, t)
as the probability to find a cluster distribution N (5) at
the time t. Then the time dependence of P(N,t) is given
by the following master equation /6/:
AP(N, )

= 2 (WNIN)P(V, O — wiN' [N P(NG] (s
<

N” specifies those cluster distributions which are attaina-
ble from the assumed distribution N via the reactions (4).
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The quantities w(N/N’) are the transition probabilities
per unit time for the transition form N’ to N. In agree-
ment with former investigations we define them as fol-
lows /1, /.

W(Nl—'l‘..N’—"l NG'H ‘-"NNINl"‘NtN‘+I"'NN)
N
EW;(N]NO =O£l2/3Nt‘V1 (9_])
W(N;+1...Ngei+1Ng—1... Ny|Nj... Ngj... Ng... Ny)

- 1 1
EW' (N‘)=“£/3NLF exp {_kB_'I‘- (ft— f‘_])} (9‘2)
1

In (9.1) we Assume that the probability of an attachement
of a monomer to a cluster of the size 1 increases with the
surface of the cluster (~ €%%) and with the number of
clusters of size {: Nt and with the density of the mono-
mers: Ny/V. The probability of the growth process of
clusters of different sizes €=1,..., N are correlated since
the number of particles is conserved (6).

Note, that for =1 the number of monomers changes
from N; to (N;—2) by creating a dimer. The transition
probability in this case reads:

WT(N1)=a————N‘(1\‘I;—1) (10)
The transition probability of the evaporation of a mono-
mer from a cluster of the size € is also determined by
the surface of the cluster and by the number of clusters
of size € 1, =h[2zmky T1-¥2 is the de Broglie wave
length of a free particle with the mass m. f¢ is a poten-
tial function, which includes volume and surface effects
as follows:

2
te=— Al+BL" an
Note, that £, = 0. A and B are constants given by /4/:

-2 .
A= —kgTln kE;O’OI‘ 2 iB= 471(43—7r c“> /30 (12)
« is a constant with respect to the special properties of
the droplet like the liquid density ¢, [particles/m?], the
surface tension o and the temperature T.

Again, the transition probability (9.2) is modified for the
evaporation of a dimer, because this transition changes
N; and N, to (N; -+ 2) and (N, —1).

Due to the kinetic mechanism (4) the transition probabi-
lities for all other processes different from (9) are assu-
med to be zero. '

3. Derivation of equations for the mean values
A further discussion of the master equation (8) is not

given here, because we are interested in the calculation

of the mean values of the numbers of clusters N,.
The mean number of clusters of size § we receive from
the first moment of P(N, B

(Ngt)> = 3 N|P(Ny... Ng... Ny, t) (13)
vy}

For the time dependent change of NC this equation can
be written as follows /8/:

;;’;<N.<t)>=32 A Ngdw; (Ng) (10

Aj Ne', gives the value of the change of Ng for the basic
reaction j, expressed by the mean value of the transition
probability w; (Ny) .

We obtain from (14) the following system of equations
for the time evolution of the mean values /1/:
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9%<Na = (— we(Ng +Wyg_; (N Ng_;) — wg (N Ng) + Wiy (Ngy)) (15

N \

58{<N1> = <—2W1+(N1)+2W;(N2 (w;r(Nth)—— W;+1(N0+1))

) —
=2 7/

=1

N
= <W1+(N1) —w (Np)+ Z-(Wz(NlN@ = Wi+1(N¢+1))>(15.

; + - -
with wy=wy =w; =0

Summaring all numbers of clusters with £=>2 it holds
with (15.1)

N
3—3‘; Z {Ng = <W1+(N1) — W;(N2)> (16)
=

This equation means that the number of clusters @= 2)
can be only changed by the creation or evaporation of
dimers. If we exclude this processes, the whole number
of clusters @= 2) is constant. Obviously it follows for the
whole number of particles in the considered case:

5 [<N1> + g <¢N¢>} =0 )
=2

The actual pressure of the system is given by the sum
of the partial pressures of all ¢lusters and monomers:

3 (N,
pt)= ) % kT (18)
=1

If we introduced an actual supersaturation y(t) in analogy
to the definition of the initial supersaturation y, (3)

N
o B _ 5 N>k
Y= e 1221 PV

then it follows from (15.2) and (16) for the time depen-
dent change of the actual supersaturation:

(19)

N
kgT 1 _
P BV ZZ‘ <Wi(NlNl) - W¢+1(N6+1)> (20)
®© —1

0 y(t)= —

4. The Fokker-Planck equation

To derive the Fokker-Planck equation (FPE) for the mean
values we treat Ny as a continuous function of € and make
use of a Kramers-Moyal expansion /9/. Starting with
(15. 1) we introduce a Taylor expansion for the transition
probabilities.

- _ J -

192 - 2
+Eﬁwg{i+1 6+

9 (1)
weg_1(N{Ng_1) = wg (N;Ng) + o vele-1-g

1 9% 4 2
———weil—1— .
+5 e cle g+
Neglecting terms of higher than the second derivative we
get from (15.1):

% (N =— <% (szr (N N¢) — WE(Ne))>

5 _
+3 <5,,7 (we (N, Ng + W:(Nr))> 22)

Using the transition probabilities (9) with the approxima-
tion (N(Ni) A <N£> (N;) we receive the following FPE:



<—‘> — K :p{~——*fe— fH”

kBT
fg—fg—1

kgT
As the restrictive condition of the TPE (23) equation (17)
considers the case g=1.

Equation (23) can be transformed further more. We write
for the argument of the exponential function

. : 2 "

fg—fg1=— A B (€F - A-1¥) =—A+ o BEY

Make use of a power expansion we can write for the
first term of the r.h.s. of (23 :

2 o= —{ ey (Ne>

(23)

4————{ <t~><Ne>[——+M {

87 - <1>
i (N D AT +_
« BT N4y {V A l+1<B'1“ 31\BT @
_ NP
_ ol N AT A 2B e
= @l Np & { +k T+, 3 hn R T

Instead of a discrete description of the clusters by means
of the number € we introduce now the cluster radius as
a continuous variable:

= %ﬁc‘x l‘i 25.1)

¢ is the particle density in the cluster and is assumed

té be constant.
With respect to the constant B (12) it holds:

2 B -1/s 1

=d, =
3 kBT<('> °re

(25.2)

where dy=20(c, kg T)-! is the capillary length.

Note, that the continuous change of re with increasing €
is correct only for large clusters. The introduction of 1g
results in a continuous cluster distribution N(rg, t) instead
of the discrete cluster distribution N (5). The smallest
value of ry is given by the radius of the free particles ry.
We define a cluster density distribution:

M_ <N(r€, t)) & (N
v N(ro, 1)) & (N

With (25.1) and (26) the restrictive condition (17) gets the
{orm:

n(re t) =

(206)

[ee]
2 . N
<%7 co,> 3\ 1';n (rgt)dre= v = const, (27)
I'g
By means of the cluster radius rg and the cluster density
distribution n(rg, t) we lind for the FPE (23)

o o0 dn \~Vsdy
En(lc,t) 61({ ( ca> lgn(lé,t)

1 1
d—{Innry,t) A2+ 2y —
L{O( nn(lo ) 1+ l\BT> [e:H
0 4n \-"s =1
4 . -3
+3x¢{6 (3 c“) ( ”Calg) A

[ (10,t)l +e}\p{—i+d°”

kgT e (28)

Another form of writing (28) is given in (29)

—n(rg )—~%J (1¢)n(1¢,t)——€(a(r¢)n(rc t))} (29)

with the guantities:

v (1 )—ﬁ<4—nc> s do ! L
#TENE ) Blra®  re (o
and

o afdn NV 1 Po . (do
3(1@)'—'5(3 Crx> 47t al(_{n( Lo, )_+ kT exp <Té> (31)

In (30) a new variable is introduced:

n(ry,t)kgT }“1

foe]

32)

rep(t) =dy {ln

r.. is the critical radius. It results from (28) with A from
(12). We explain the meaning of r,. in the next section.
We devide two characteristic terms in the FPE of the
form (29): the drift term V(L‘f) n(g,,t) and the diffusion
term a(rg) n(re, t). The drift term describes the deter-
ministic behaviour of the system while the diffusion term
is related to the nondeterministic behaviour due to the
consideration of fluctuations in the system.

\Y% (1‘,) is interpreted to be the mean velocity of the deter-
ministic cluster growth and shrinkage, as explained in
the following section, a(rc) represents a diffusion para-
meter. The stationary solution no(rc) is obtained from the
condition:

In(rgt) o
at
We find:
("(1'0') + %a(r;)) n(ry = a(re) »af—“’-n"(rc) »(m

1t follows from (33), that the kinetic coefficients v(r@ and
a(rg don’t stipulate independently from each other. If
we use the stationary solution in the form

A F¢>»
v (34)

01y o oty |
1°(rg) ~ exp ( kT
with 4 F‘ being the change of the free energy due to the
etablishment of the cluster of size € then (33) results
in:
d a(r) 0AF
V(rg+ ——alg = — &
al'c kgT al'z

(35)

By means of (33), (34) or (35) the kinetic coefficients v(re)
and a(rg) or the stationary solution nl(tg or the free
energy 4 F are able to be calculated. We have determined
the statlonaly solution in a former discussion of the free
energy /1/:

40 lé_]

n°(r
(ro) | )

kyT

n° (1g) = lexp {(%cwé)ln
Use of (33) leads to the close form of the FPE (29):

8 n(r tt)
n°(1¢)

© kgT

E)n(re) b
at o

{a(w)n"(le (37)
Note, that the FPE (29) respectively (37) is a good ap-
proximation only in the range of large ry, where a quasi-
continuous change of re with ¥ is fulfilled. To describe
the formation of clusters with small radii, the formalism
of master equations has to be prefered.

5, The deterministic behaviour of the system

Neglecting the diffusion term a(rg) n(re,t) in (29) which
considers the fluctuations in the system we obtain only
the drift term v(rg n(ty,t) which allows to predict the
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deterministic evolution of the system. In the deterministic
case we receive from (29) the following Liouville equa-
tion /1/:

_n( )—,_i _Di<4_'nc )_1/3.(19 _1__«
et arg|3\3 °) 2|t

rg> 1

i] n{rg, t)

(38)

If we don’t take into account the formation or disappea-
rence of clusters, (38) can he written as a continuous
equation:
—n(1‘¢,t)+div 12 t) . 1()—0 (39)
In general the formation,disappearence of clusters has lo
be considered in additional terms on the r.h.s, of (39) in
analogy to (16).
Comparing (39) with (38) we find the equation for the
time dependent change of the cluster radius

a o« [dn _1/3(10 1 1
e — — 1, Ie>F 40
E)tlc’ 3(3 CD‘) o ( )

Tep (t) g
Equation (40) gives the mean velocity of the growth and
shrinkage of one cluster with the radius re in agreement
with the kinetic coefficient v(rg (30). -
The mean velocity of cluster growth can be alternated.
It is held: .

\f(rt)%O. if 1'¢%1’C,. @n
That means, the critical radius r,. (32) acts as a selec-

tion value. If we discuss the evolution of the cluster

Zusammenfassung

Die vorliegende Arbeit befaBt sich mit der theoretischen
Beschreibung eines Phaseniibergangs' in Ubersittigten
Systemen durch Clusterbildung (Nucleation) und Cluster-
wachstum. Ausgehend von allgemeinen stochastischen
Methoden wird zunichst eine Mastergleichung aufgestellt,
die die Herausbildung der Clusterverteilung beschreibt. In
den Ubergangswahrscheinlichkeiten pro Zeiteinheit sind
dabei die Elementarprozesse des Phaseniiberganges be-
ricksichtigt.

Auf der Grundlage dieser Ubergangswahrscheinlichkeiten
werden Mittelwertsgleichungen fiir die Zahl der Cluster
hergeleitet. Die aktuelle Ubersiittigung des Systems wird
berechnet. )

Eine Fokker-Planck-Gleichung fiir die Mittel-Werte wird
ebenfalls explizit hergeleitet, wobei die kinetischen Ko-
effizienten aus den Ubergangswahrscheinlichkeiten Be-
rechnet werden. Diese Fokker-Planck-Gleichung wird aus-
fihrlich diskutiert, die stationdre Losung wird angegeben.
Durch Diskussion des Drifiterms der Fokker-Planck-
Gleichung wird das deterministische Verhalten des Sy-
stems erkldrt. Der kritische Radius wird berechnet und
diskutiert.

Pestome

Hacrosamas pa6oTa pacCMATPUBACT TCOPETUUCCKOC OIMCAHME
hasoBoro mepexoAa B NEPECHIIIEHHBIX CUCTEMAX IOCPEJCTBOM
ofpasopamus crycrkos (o6pasopanme 3apOABILEN) ¥ pocra
CTYCTKOB. :

Vicxonst w3 oOniMx CTOXACTUUECKHX METONOB cHauala Co-
CTABJLICTCS MACTEP-YPABHECHUE, KOTOPOE OIMCHIBAEST 06PA30-
BAHME PACHPEJENCHMS CI'YCTKOB, B BEPOATHOCTAX ICPEXOJA B
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ensemble as a competative process between the clusters
/10/ the -clusters are only able to evolve when their radius
is larger than the critical radius. Clusters with a radius
smaller than the critical one shrink and disappear again.
Because the density of the free pai‘ticles n(ry, t) is coupled
with the development of the other clusters by the con-
dilion (27) the critical radius possesses an information on
the recent stage of the phase transition. If only free par-
ticles exist in the system at the initial time t,, the smal-
lest value of r,,. in agreement with former investigations
/11/ is given by:
NkgT|™
Cerlte) = dg {]n v pB

:do{ln."o}—_1 (42)

0

r. (t) increases clgring the phase transition, because the
density of the free particles is decreasing. During the
first stage of stochastic formation of small clusters r,
changes only in a small range of order, the free particles
are the majority of all clusters. By a stochastic formation
of overcritical clusters a growth process inserts for these
clusters, where the number of free particles decreases
rapidely, r,,. Increases faster with time. During the last
stage of the phase f{ransition, the so called Ostwald
ripening, r..changes little with time again, because most
ol the free particles are in bound states. The selection
process oceurs slowly.

The deterministic growth equation (40) well estimates.
the development of the system for the stages of cluster
growth and Ostwald ripening /12, 13/.

CAMUEMLY BPEMCHM YUMTBIBAIOTCS IIPHU 2TOM QNCMECHTAPHDIC
1poreccsl (hasoBoro nepexoia.

Ha OCHOBE 3TMX BEPOITHOCTECH TEPEX0[A BHIBOAATCA YpPaBHC-
HMSL CPERHErO 3SHAYGHMS I UMCHA CTYCTKOB., AKTYaJbHAs
HEPECLIILICHHOCTh  CUCTEMBI  PACCUMTBHIBAETCA.  YDABHEHHE
doxxepa-INaHKa BHIBOXUTCS TAK)KE B SIBHOM BUJE, NPUYEM
DACCUMTHIBAIOTCA KHHETMUCCKHE KOIMDMUIMCHTH M3 BEPOAT-
HOCTEH MEpexojia. ITo ypaeBueume Dokkepa-Tlnanka noj-
PoOHO paccMaTpMBAETC, RKACTCA CTAIMOHADHOE PEILUEHME.
ITyrém paccMoTpenust JpeidboBoro uwjieHa ypaBHeHMs DOK-
xepa-TTnanka  OGBACHIETCS  JICTEPMMHAHTHOC  IIOBCACHUC
CHCTEMBl, KPHUTHUECKUIT PAJMyC PACCUMTBLIBACTCS M DaCCMa-
TPUBAETCSL.

Summary

This paper deals with the theoretical description of a
phase transition in supersaturated systems by means of
cluster formation (nucleation) and growth of clusters.
Starting with general stochastic methods first a master
equation is formulated which describes the establishment
of a cluster distribution. The transition probabilities per
unit time consider the basic processes of the phase tran-
sition,

By means of these transition probabilities equations for
the mean values of the number of clusters are derived.
The actual supersaturation of the system is calculated.
A Fokker-Planck on the mean values equation is also de-
rived explicitely, where the Kkinetic coefficients are calcu-
lated from the transition probabilities. This Fokker-Planck
equation is widely discussed, the stationary solution is
given too. :
By discussion of the drift term of the Fokker-Planck
equation the deterministic behaviour of the system is
explained. The critical radius is calculated and discussed.



Résume

Lrétude présente est consacrée a la description théorique
d’'une fransition de phase en systémes sursaturés par voie
de formation.de clusters (nucléation) et de croissance de
clusters. ]

En partant de méthodes stochastiques générales, on
établit d’abord une équation principale qui déerit le
développement de la répartition des clusters. Les proba-
bilités de transition par unité de temps tiennent compte
des processus élémentaires de la transition de phase.

En se basant sur ces probabilités de transition, l'auteur
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